SHUNT FRACTION HEPATOPULMONARY SYNDROME: A CASE STUDY

Greenslopes Lung Function

Kaylee Moses Carmen Warburton

100% OXYGEN SHUNT STUDY

What is it? How is it Performed?

PROBLEMS WITH THE TECHNIQUE

- Prolonged 100% oxygen may lead to N2 washout and alveolar collapse
- Arterial blood gas collection is both difficult and painful
- Analysis of arterial blood is time dependent

3

SHUNT FRACTION CALCULATION

$P_AO2 = P_1O2 [Pb - P_AH_2O] - (P_aCO2/0.8)$

 P_AO2 = Alveolar oxygen tension

Pb = Barometric pressure

 P_AH_2O = Water vapour pressure with the alveoli at body temp. (constant value of 47mmHg)

RER = respiratory exchange ratio (constant value of 0.8)

Q_S =Blood flow through shunt

Q_T =Total blood flow

- 0.0031 =Solubility coefficient for oxygen in whole blood
- PaCO2 =Partial pressure of CO2 in arterial blood
- C(a-v)O2 =4.5 (arterial-mixed venous oxygen content) assumed to equal 4.5mL/dL
- P_AO2 = Alveolar oxygen tension

INDICATIONS FOR A SHUNT STUDY

- Hypoxia
- Liver transplant workup

WHAT DOES THE RESULTS MEAN?

Normal Shunt <5% Abnormal Shunt >10%

7

Physiological Shunt

- Poorly ventilated lung units
 - Lung collapse
 - Consolidation of the lung

Anatomical Shunt

- Intrapulmonary Shunting
 - Arteriovenous malformation
 - Hepatopulmonary syndrome
 - Portal hypertension arteriovenous malformation
- Intracardiac shunting
 - Occurs when defect in the atrial or ventricular septa allowing mixed venous blood to pass from the right to left side of the heart without traversing the pulmonary capillaries

Status: ACCEPTED Analyzed: 29/04/2022 12:06:17 Sample Type: Arterial Order Number: 665557429 Operator ID: snpcag4

Patient

Cartel	lae						
Cartho	190				22	00000	
LOT NO.			0000		22	DZZZF	
S/N:			0000	00000	1500Z	92349	
Exp. Da	ite:				11/05	/2022	
Analyz	er						
Model:			GEM [®] Premier 5000				
Area:					GPF	I-LAB	
Name:					1	LAB 2	
S/N:					1709	91025	
Result	5		Crit.	Refe	ecnore	Crit.	
			Low	Low	High	High	
Measure	d (37.0°C	3)					
pH	↑7.45		[7.09	7.33	7.43	-]	
pCO2	41	mmHg	£	35	45	81]	
pO2	1 68	mmHg	[59	80	100]	
Na*	132	mmoi/L	[]	135	145]	
K-	4.6	mmol/L	{ }	3.5	5.2]	
Ca**	1.17	mmol/L	£ 3	1.16	1.32]	
Glu	6.3	mmol/L	[]	3.6	7.7]-	
Lac	1.1	mmol/L	[0.6	2.0	3	
CO-Oxim	etry						
tHb	141	g/L	1	100	170]	
8O2	↓ 95.1	%	(96.0	100.0]	
Derived							/
BE(B)	† 4.1	mmol/L	{ }	-2.0	2.0]	1
Ca**(7.4)	1.19	mmol/L	5 3	1.16	1,32	3	
HCO3(c)	↑ 28.5	mmol/L	[]	22.0	26.0]	
↑↓ Outside Reference Range							

SHUNT FRACTION CALCULATION

PAO2 = 664.75 mmHg PaO2 = 68mmHg

=Blood flow through shunt Qs Qt =Total blood flow 0.0031 =Solubility coefficient for oxygen in whole blood PaCO2 =Partial pressure of CO2 in arterial blood C(a-v)O2 = 4.5 (capillary arterial-mixed venous oxygen content)

<u>Qs</u> Qt

=

(PAO2-PaO2) x 0.0031 (C(a-v)O2 + [(PAO2-PaO2) x 0.0031]

- = (665 Hg- 68mmHg) x 0.0031 / 4.5+ [665-488mmHg x0.0031]
- = 597 mmHg x 0.0031 / [4.5 + (597x 0.0031)]
- = 1.8507 / (4.5 + 1.8507)
- = 1.8507/6.3507
- = 0.29
- =0.29 x 100
- <u>Qs</u> Qt = 29%

HEPATOPULMONARY SYNDROME

A CASE STUDY

PRESENTATION

• Chronic liver disease (unknown origin, not alcohol related)

10

- 6 months of increasing breathlessness
- Cough
- Jaundice
- Finger clubbing
- Cyanosis
- Wheeze

Resting hypoxia + chronic liver disease was highly suggestive for Hepatopulmonary Syndrome

LUNG FUNCTION TEST RESULTS

DLCO, lung volumes and spirometry

- DLCO 10.04 mL/min/mmHg 33% of predicted KCO 54% of predicted
- TLC 5.50L 74% of predicted
- FVC 2.86L 57% of predicted and FEV1 2.38L 61% of predicted Ratio 83%

Arterial Blood Gas

- PaO2 52mmHg (normal 80-100)
- PCO2 38mmHg (normal 35-45)

11

LUNG FUNCTION TEST RESULTS

Shunt Study – 29% shunt fraction

Echocardiography- Significant shunting visualised, consistent with transpulmonary shunting, not a PFO

Six minute walk test – unable to perform due to hypoxia

Pulse oximetry

- SpO2 on room air at rest when <u>seated</u> was 80%
- SpO2 on 4L/min at rest when seated was 83%
- SpO2 on room air when supine was 88%
- SpO2 on 2L/min when supine was 93%

12

ORTHODEOXIA

Arterial deoxygenation (>5% loss in PaO2) in upright vs supine position

13

PLATYPNOEA

Shortness of breath when sitting up, improved by lying supine

PLATYPNOEA + ORTHODEOXIA + CHRONIC LIVER DISEASE

Highly suggestive of Hepatopulmonary Syndrome

WHAT IS HEPATOPULMONARY SYNDROME? 14

Hepatic Disease + Arterial Oxygen Defect + Intrapulmonary Vascular Dilations

- Imbalance of vasodilators and vasoconstrictors
- Increased pulmonary artery pressure and arteriovenous malformations
- Low vascular resistance and altered pulmonary vascular tone

Decreased blood transit time + Reduced Gas exchange

V/Q Mismatch + Shunt

TREATMENT

Liver transplant only successful treatment for HPS

 Improves all abnormalities leading to shunt and improved hypoxaemia in 6-12 months

If not suitable for transplant

- No medical therapies available for HPS
- Oxygen therapy
- Palliative care

THANK YOU

References

Chiang, S. (1968). A nomogram for venous shunt (Qs/Qt) Calculation. *Thorax*, 563-565. Cruz, J. M. (1987). Understanding the meaning of the shunt fraction calculation. *Journal of Clinical Monitoring and Computing*, 124-134.

Gandhi, K. T. (2021). Hepatopulmonary syndrome: An Update. *World Journal of Hepatology*, 1699-1706.

National Organization for Rare Disorders. (2018). *Hepatopulmonary Syndrome*. Danbury CT: National Organization for Rare Disorders.

Soulaidopoulos, S. C. (2018). Review Article: Update on current and emergent data on hepatopulmonary syndrome. *World Journal of Gastroenterology*, 1285-1298.

Varghese, J. I.-b. (2007). Hepatopulmonary syndrome- Past to Present. *Annals of Hepatology*, 135-142.

West, J. (2003). Respiratory Physiology: The essentials.