

COPD

- ▶ Partially reversible obstructive lung disease
- ▶ Umbrella term for a wide range of diseases
 - ► Emphysema ► Chronic Bronchitis
 - ► Chronic Irreversible Asthma
- Known risk factors
- ► Smoking +++
- ▶ Pollution
- ► Genetics
 ► Aging

2

COPD Symptoms Dyspnoea; especially when active Audible wheeze Chest tightness Crackles (due to reopening of collapsed airways) Australian morbidity and mortality > 1.5 million clinically diagnosed 2 year survival for severe COPD (FEV₁ <50% predicted) − 50%

Respiratory Function Tests

- Spirometry
 - Reduced FEV₁ and FEV₁/FVC
 - ▶ Irreversible/Fixed Intrathoracic Obstruction
- ► T_LCO
- ► Reduced T_LCO and KCO (T_LCO/V_A)
- ► Lung Volumes (Body Plethysmography)

▶ Increased TLC (Hyperinflation) and Elevated RV (Gas Trapping)

_

COPD Assessment Test (CAT)

► COPD Assessment test is 8 questions (max score = 40)

CAT score	Interpretation (burden)
31 - 40	Very high
21 - 30	High
10 - 20	Medium
0 - 9	Low

Ambiguous
 0 yields (low) burden

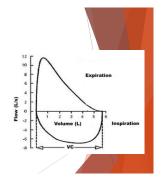
3

5

U yields (low) burden
 10 is certainly achievable

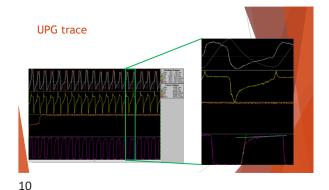
GOLD

- \blacktriangleright Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017 update uncoupled FEV $_{\rm I}$ from COPD diagnosis
- Diagnosis is now based upon Symptom experience and Exacerbation rat


F

Research opportunity... ▶ Are we best assessing COPD patients?

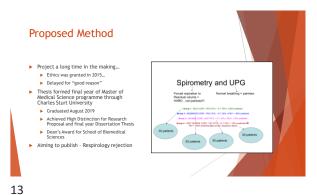
► FEV1 has been described as a poor indicator for small airway function
 ► COPD is a small airway disease...


Is there another test that may detect small airways disease specifically and sensitively?

Proposed for this study - Ultrasonic Pneumography

What is Ultrasonic Pneumography?? ▶ Breath by breath analysis of alveolar emptying ▶ Assessment of gas mixing through the lung ▶ Uses an ultrasonic spirometer to measure the density and flow of breath

Ultrasonic Pneumography ▶ Largely novel and sparingly investigated ▶ Assessment of ventilation homogeneity...similar to N₂ washout ▶ Research buffs more than clinical sense Side stream analysis of molar mass (CO₂) during tidal breathing enables detection of flow and expiration of CO2 from the alveolus recorded at the mouth ▶ Inspired and expired breath has different density due to different components ▶ Lag exists and must be corrected 9

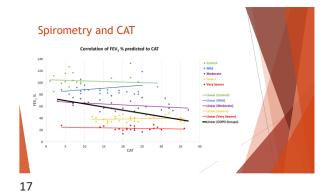

UPG trace

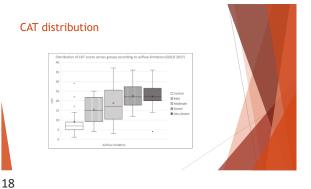

- Amplitude - 28-30 g/mg

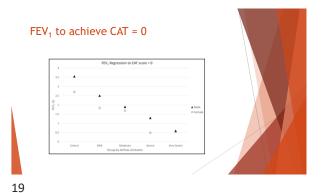
Aims ▶ Does UPG align with Spirometry? ▶ Does the CAT questionnaire accurately express lung health? Study Design Using distinctive classification of airflow limitation based of FEV. ▶ Do the UPG results classify similar groupings of severity? ▶ Up to 30 participants in each group (150 total) ▶ Coded according to GROUP and sample number for that group: ie C4

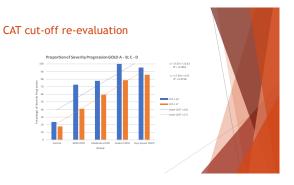
12

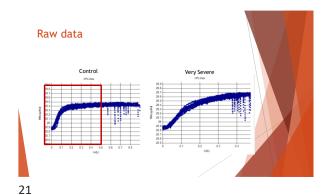
8






Methods ► Cross sectional study ▶ 17 (6 male) control participants ▶ 22 (11 male) mild (COPD) airflow limitation 116 participants post screening ▶ 27 (12 male) moderate (COPD) airflow limitation ▶ 28 (15 male) severe (COPD) airflow limitation ▶ 22 (10 male) very severe (COPD) airflow limitat FEV, (GLI 2012 % pred. Control ≥ 80 % 75 - 85 % Mild ≥ 80 % < 70 % 50 - 79 % 30 - 49 % < 70 % < 70 % < 30 % < 70 %




15

